GENETICS SOCIETY OR AUSTRALIA

18th GENERAL ILETING
Brisbane, 20-21 May, 1971.

PROGRAMME

Sessions will be held in the Biological Sciences Lecture Theatres (B1 and G12)
$\frac{\text { Thursday } 20 \text { May }}{8.30 \cdots 9.00 \mathrm{a} . \mathrm{m}}$

Registration (Biological Sciences Building)
SESSION AA
Evolutionary Genetics. Chairman: Dr. Wharton B. Mather.
9.00 atm. V Webb, G.C. Has polyploidy occurred in

Department of Genetics, the evolution of the
University of Melbourne. Dermaptera?
$9.30 \mathrm{a} . \mathrm{m} . \sqrt{\text { Martin, }} \frac{\mathrm{J} .}{\text { Department of Genetics, } \quad \text { Inversion polymorphism in }}$
$10.00 \mathrm{a} \cdot \mathrm{m} . \sqrt{ }$ Angus, D. Selective mating and stable Genetics Laboratory, equilibrium in Drosophila Zoology Department, tetrachaeta.

Population Genetics. Chairman: Dr. R.D. Brock.
$11.00 \mathrm{a} \cdot \mathrm{m} \cdot \frac{\text { Latter, }}{\text { Division of Animal Genetics, }}$ CSIRO Aping. N.S.W
$11.30 \mathrm{a} . \mathrm{m}$. Franklin, I.R.
Division of Animal Genetics, CSIRO Epping. N.S.W.
$12.00 \mathrm{a} . \mathrm{m} . \frac{\text { James, S.H. }}{\text { Department of Botany, }}$
University of Western Australia.

Genetic divergence and population variability.

Allozyme variation in natural
populations of Drosophila melanogaster.

Neutral allele manipulation as a tactic in evolution.
*Paper to be read by the author underlined.

Plant Genetics		
$11.00 \mathrm{am} \cdot \sqrt{ }$	Darvey, N.I. School of Botany, University of New South Wales.	Nucleolus and chromosome association studies in hexaploid wheat.
$11.30 \mathrm{am}$.	Pryor, A.J. Genetics Section, Div. of Plant Industry, CSIRO Canberra.	Genetics and biochemistry of catechol oxidase in maize.
$12.00 \mathrm{a.m.V}$	```McWhirter, K.S. Department of Agricultural Botany, University of Sydney.```	Variegated pericarp in Sorghum bicolor.
$12.30 \mathrm{p} . \mathrm{m}$	Shepherd, K.W. Department of Agronomy, Waite Agricultural Research Institute, Sth Australia.	Genetic control of endosperm proteins in wheat and rye.
	IUNCH	
	SESSION 2A	
	Population Genetics. Chairmar: Dr. W. R. Scowcroft.	
$2.00 \mathrm{p.m}$.	Sheldon, B.L. Milton, M.K. Division of Animal Genetics, CSIRO Epping. N.S.W.	Some results of scutrllar bristle selection bearing on canalisation, dominance and genetic correlation.
$2.30 \mathrm{p.m}$.	Winston, J.A. Department of Mathematics, La Trobe University, Vic.	Mutation survival, dominance and assortative mating.
$3.00 \mathrm{p} . \mathrm{m}$.	Sved, J. School of Biological Sciences, University of Sydney.	Tests for heterosis in Drosophila melanogaster.
$3.30 \mathrm{p} . \mathrm{m}$.	AFTERNOO TEA	

	Population Genetics.	hairman: Dr. B. Latter.
$4.00 \mathrm{p.m}$.	Bundgaara, J. Department of Genetics, La Trobe University, Vic.	A simultaneous study of several selection components in Drosophila melanogaster.
$4.30 \mathrm{p} . \mathrm{m}$.	$\begin{aligned} & \text { Scowcroft, W.R. } \\ & \text { Division of Plant Industry, } \\ & \text { CSIRO Canberra. } \end{aligned}$	The effective number of loci in selection response.
$5.00 \mathrm{p} . \mathrm{m}$.	Karlsson, L.J. Barker, J.is Department of Animal Husbandry, University of Sydney. SESSION $2 B$	Effects of population size and selection intensity on responses to disruptive selection.
	Biochemical Genetics. Chairman: Dr. H.T. Clifford	
$2.00 \mathrm{p} . \mathrm{m}$.	Kinnear, J.F. Martin, M.D. Department of Genetics, University of Melbourne.	Gene activity in insect development: The relation between the naemolymph proteins of the larva and adult in Calliphora.
$2.30 \mathrm{p} . \mathrm{m}$.	Thomson, J.A. Voitl, B.D. Department of Genetics, University of Melbourne.	Gene activity in insect development: Tarval and adult haenolymph esterases in Calliphora.
$3.00 \mathrm{p} . \mathrm{m}$.	Sin, Y.T. Department of Genetics, University of Melbourne.	Gene activity in insect development: Patterns of nuclear RNA and protein in larval tissues of Calliphora.
3.30. p.m.	AFTERNOON TEA	
	Biochemical Genetics. Chairman: Prof. P.A. Parsons.	
4.00 p.	Daday, H. CSIRO Canberra.	Biochemical basis of differentiation in chicken embryos.
$\begin{aligned} & 4.30 \mathrm{p} . \mathrm{m} . \\ & \text { with } \end{aligned}$	Wha, K.K. Department of Genetics, Research School of Biological Sciences, A.N.U.	The regulation of purine metabolism in Neurospora.
$5.00 \mathrm{p} . \mathrm{m}$.	Chew, G.K. Department of Genetics, La Trobe University, Vic.	Phosphoglycerate kinase and tetrazolium oxidase polymorphism in Drosophila.

$8.00 \mathrm{p.m}$. Presidential address.

Prof. M.J.D. White, Department of Genetics, University of Melbourne.

Genetic models of speciation.

Friday 21 May Biochemical Genetics. Chairman: Dr. J.A. Thomson

9.00 a.m. $\sqrt{ }$	Vandeberg, J.I. Cooper, D. Sharman, G.B. Poole, W.E. Department of Genetics, La Trobe University, Vic.	Inherited variation in marsupial phosphoglycerate kinase and its bearing on X-inactivation.
$9.30 \mathrm{a.m}$.	Cooper, D.W. \& G.B. Sharman Department of Genetics, Ia Trobe University, Vic.	```A proposed mocivanism of X-inactivation in eutherian and marsupial mammals.```
$10.00 \mathrm{a} \cdot \mathrm{~m} .$	Shineberg, B. Division of Plant Industry, CSIRO Canberra.	Degraded lactose repressors
10.30 a.m	MORNING TEA	
$.00 \mathrm{a} \cdot \mathrm{~m}$	Microbial Genetics. Chaimman Stanisich, V.A. Holloway, B Department of Genetics, Monash University.	Prof. D.G. Catcheside mitanes Sex factorp of Pseudomonas aeruginosa.
$11.30 \mathrm{a} . \mathrm{m}$	Krishnapillai, V. Department of Genetics, Monash University.	```Restriction or Pseudomonas aeruginosa phages by multiple antibiotic resistant R-Qactors.```
$12.00 \mathrm{a} . \mathrm{m}$	Kretschmer, P.J. Egan, J.B. Department of Biochemistry, University of Adelaide.	Suppressor system in Staphylococcus aureus.
$12.30 \mathrm{p} . \mathrm{m}$	Woods, W.H. Egan J.B. Department of Biochemistry, University of Adelaide.	Mapping the integration site of coliphage 186.

Friday 21 May Miscellaneous. Chairman: Dr. K. Mowhirter.

$9.00 \mathrm{a.m} . \quad$	Craddock, E. Scholof Biological Sciences, University of Sydney.
$9.30 \mathrm{a.m} \quad$	Ford, J.H.
School of Biological Sciences, Flinders University, S.A.	

A compound hybrid zone in Didymuria.

Nuclear degeneration: A causal sequence of events.
10.30 atm. MORNING TEA

Recombination. Chairman: Assoc. Prof. S. Barker.
Westerman, $\frac{\text { M. }}{\text { Department }}$ of Genetics, La Probe University, Vic.
$11.30 \mathrm{a} . \mathrm{m}$. Hawke, A. Scowcroft, W.
Plant Industry, CSIRO Canberra.
$12.00 \mathrm{a} . \mathrm{m}$. Byrne, O.P. Hawke, A.
Plant Industry, CSIRO Canberra.

Lunch

SESSION 4 A

Microbial Genetics. Chairman: Prof. M.J.D. White.

* 2.30 pom. ${ }^{\text {. }}$
3.00 pom.

MacPhee, D.G.
Department of Genetics,
La Probe University, Vic.
Brink, N.G.
School of Biological Sciences,
Flinders University, S.A.
Hull, R.R. Reeves, P.R. Department of Microbiology, University of Adelaide.

The effort of X-Irradiation on chiasma frequency in Chorthippus brunneus.

Effect of density on recombination in Drosophila melanogaster.

Effect of density on chiasma frequency in the locust Chotbojeetes terminirera.
-

SESSION 4A (cont'd)

*

Genetic implications from the fine structure of nuclear division in Paramecium.
4.00 p.m. AFTERNOON TEA.
$4.30 \mathrm{p} . \mathrm{m}$. Business Meeting.

SESSION 4B

Human and Behavioral Chairman: Dr. O.R. Byrne. Genetics.
$2.00 \mathrm{p} . \mathrm{m} . \quad \frac{\text { Wallace, D.C. }}{\text { Queensland Institute of }}$
2.30 p.m.
3.00 p.m.
3.30 p.m.
$4.00 \mathrm{p} . \mathrm{m}$.
4.30 p.m.

Medical Research.

Angell, R.
Prince Henry Hospital and Prince of Wales Hospital, Randwick.

McKenzie, J.A. Parsons, P.A. Department of Genetics, Ia Trobe University, Vic.

Parsons, P.A.
Department of Genetics, La Trobe University, Vic.

AFternoon tea
Business Meeting.

Stevenson, I.
Department of Developmental
Biology,
A.N.U. Canberra.

The genetic map of the human X chromosome, with a report of a study of the linkage relationships of the Lesh-Nyhan Locus.

Chromosomal polymorphism of the Y chromosome in Australian aboriginal and white populations.

Variations in mating propensities jin selected strains of Drosophila melanogaster.

Morphology and behavior of mice and men.

POIYPIOIDY OCCURRED IN THE RVOIUUION OF THE DERMAPRERA?

2
 4 n
 §
 36

By G. C. Webb
Department of Genetics,

The widely accepted view that the earwigs have evolved by polyploidy has been recently re-expounded by Henderson(1970)but the theory suffers from certain weaknesses, the most notable being the requirement that polyploidy arose independently in different superfamilies in the higher Dermaptera (Suborder Forficulina).

yob rounder pohymor

Recently obtained results which do not agree with the polyploidy hypothesis have been found the higher Dermaptera from eight indigenous Australian species and from the introduced Fopficula auricul-
aria (Webb and White, 1970). These results include aroport oi the lowest chromosome count in the higher Demmaptera; $2 n \sigma=10(8+X Y)$ in Labidura riparia; the third different chromosome count for this "cosmopolitan species". An Ko species is also reported for the first time: previously all male Dermattera were believed to require a Y chromosome and the case for polyploidy is considerably weakened by this finding particularly as the diploid number, $2 n \hat{S}=$ $19(18+X)$ is above that of the primitive diploid number (around 12) on the polyploidy hypothesis.

In addition a species of Hemimeris (suborder Hemimenina) investigated by White (unpublished) hos $2 n \hat{0}=7\left(X_{1} \bar{X} \hat{Y}+4\right)$; which indicates that multiple sex chromosome mechanisms may arise in lower Dermaptera by agencies other than polyploidy.

The case for polyploidy in the Dermaptera appears to be confounded by the above new evidence.

References
Henderson, S.A. Chromosome, 31, 139 (1970). Webb, G.C. and White, M.J.D. Experientia, 26 , 1387 (1970).

INVERSION POIYMORPISSH II CHIRONOMTS SEA GYEI
 By J. Martin.
 Department of Genetics,
 University of Ifelbourne.

Chironomus staegeri is distributed through most of ITorth America. The inversions in this specios show a number of unusual charactoristics, including marked deficiency of heterosycotes; considerable non-random association or inversion systems, whether linked on non-linked; and the occurrence together of rare sequences.

The results further indicate that the species may be in the process of splitting into three parts, which may already have achieved a considerable degree of isolation.

SELECTIVE MATING AND STABIT FQUILIBRIUM

IN DROSOPHIIA MTMPACHAETA
By D.S. Angus
Genetics Laboratory
Zoology Department
University of QueensIand

It is well established that among some species of Drosophila, polymorphic for chromosomal inversions, that individuals which are chromosomally heterozygous may have a selective advantage over homozygous individuals from the same populations.

Drosophila tetrachaeta is a chmomosomally polymorphic species found in New Guinea which has two altemative gene sequences on chronosome 5. These sequences are separated by a simple inversion involving about 30% of the chromosome. All natural populations so far sampled appear to be in Hardy-Weinberg equilinrium with respect to karyotypes involving this inversion.

Investigation of the relative mating success of male karyotypes taken from a laboratory culture of the Bisianumu population demonstrated that heterozygous males were more successful than either of the homozygous males. The advantage onjoyed by the hetcrozygous males was independent of the females' karyotype.

A stable equilibrium frequency for the inversion was calculated from the differences in relative fitness of the males. This frequency did not significantly differ from, and could account for, that found in the natural populations at Bisianumu.

GENETIC DIVERGENCE AND POPUIATION VARIABIIITY

By B.D.H. Latter
Division of Animal Genetics

> CSIRO Epping, I.S.W.

IJatural selection for an intemodiate level of gene or enzyme activity has been shown to lead to a high frequency of heterotic polymorphisms in populations subject to mbation and random genetic drift. The model assumes a symmetrical spectmm of mutationel variation, with the majority of variants having only minor effects on the probability of survival. Each mutational event produces a variant which is novel to the population. Allelic effects are assumed to be additive on the scale of enzyme activity, heterosis arising whenever a heterozygote has an expected level of activitr closer to optimal than that of other genotypes in the population.

Experimental evidence in support of the model is reviewed. A survey of published data concerning polymorphic loci in man and Drosophila suggests that an alternative model, based on the superiority of hybrid molecules, is not generally applicable; 13 loci giving rise to hybrid zones on eloctrophoresis have a mean frequency of heterozygotes of $0.22 \pm .06$, compared with a value of 0.23 士04 for 16 loci classified as producing no hybrid enzyme.

A new measure of genetic divergence between populations is proposed, which is readily interpreted genetically, and increases approximately linearly with time under centripetal selection, drift and mutation. The parameter is closely related to the rate of aminoacid replacement observed over the Jong-term evolutionary history of the computor populations studied.

AILOZYME VARIATION IN NATURAI ROPUIATIONS

OF DROSOPHIIA METATYOGASTER
By I.R. Prankinn
CSIRO Epping, N.S.W.

Allele frequencies at 10 loci have been measured in two populations of D. melanogaster collected in the Hunter Valley, N.S.W. These two populations, located at Wineries about 5 miles apart, differ in frequency at several loci. Two pairs of loci, Esterase-6 and Tetrazolium Oxidase on the third chromosome, and Alcohol dehydrogenase and $\boldsymbol{\alpha}$-glycerophosphate dehydrogenase on the second, show significant linkage disequilibrium. The implications of these findings are discussed.

NEUTRAL AILETE MANJPULATION AS A TAOTIC
 IN EVOLUTION.
 By S. H . James
 University of Western Australia

A computer model of genomic organination, deriving from that proposed by Kauffman (1969) is doscribed. The operation of the model allows a broad system of analogies to be devoloped. In this system of analogies, neutral allole analogs can be defined and some of the possibilities nesulting from their manipulation are demonstrated. In particular, it is shown that in this model, neutral alleles at other loci may be used to neutcelize initially non-neutral mutations, and some of the evolutionary implications of this phenomenon are indicated.

MUCTEOLUS AND CHROMOSOME STUDIES IN HEXAPIOID VHEAS

By \mathbb{N}. I. Darvey, and C.J. Driscoll.
School of Botany,
University of $\mathbb{N} . S . W .$, Sydney.

Four nucleolar bodies arising from the two pairs of satellited chromosomes (1B, 6B) are produced in each telophase nucleus. The probability that these fuse depends in part on the apdtial proximity of the tolophase satellited chronosomes.

The distances between satellites in materials deficiont for two homologous or two non-homologous satellites were measured. The materials were not pre-fixed with cold water and hence chromosomes retained a normal metaphase configuration. The results supported the conclusions drawn from earlier studios on pre-fixed materials together with other studies on nucleolas fusion (Gen. Soc. Aust. 1970) There was no evidence for somatic association in hexaploid wheat.

Studies at meiosis indicate that nucleolar fusion is always complete at zygotene, except in cases where homologous chromosomes failed to associate (asynapsis), e.g. by colchicine treatment.

Nucleolar fusion is complete at zygotene in de-synaptio material of nullisomic 5D or di-isosomic 5B ${ }^{2}$. This suggests that honologous chromosomes had associated pre-synaptically, but that the monitoring effect of genes in homoeologous group 5 had a limiting effect on synapsis

The pre-sygotene fusion of nucleoli in material with varying numbers of satellited chromosomes is being currently studied and some results will be presented.

The Catechol Oxidase gene (Cx) has been located in chromosome 10 less than 0.2 recombination units from the endospemm nomber du ${ }_{1}$. Three electrophoretic variants, (the Slow and Fast migetang forms and a Mull), are specified by the alleles $C x^{N}, C x^{+}, C x^{N}$ respectively.

As interaction occurs between catechol oxidase and a'modifer' which is probably an endogenous phenolic substrate. The enzyme and modifer are functionally isolated until cellular disruption, when the interaction leads to changes in the kinetics and olectrophoretic migration of the enzyme. The modifier content in the socdling is genetically determined by genes other than $C x$, and in addition is reduced ten-fold by treatment of seed with maleic hydrazide.

The system seems to possess many of the requirements of a biochemical mechanism for hypersensitive disease resistance and should allow for a rigorous test of several models.

VARIEGATED PERICARP IN SORGHUM BICOIOR

By K.S. McWhister
Department of Agrioultural Botany,
The University of Sydney.

A variegated pericarp phenotype, consisting of red stripes on a white background occurs in certain Sorghum bicolor stocks (calico sorghurn). This phenotype is of interest because of the apparent homology with the variegated pericarp phenotype in maize.

A variegated phenotype can be produced by either a "pottern" allele (such as $P^{m o}$, mosaic pericarp, in maize) or by a genetic system characterised by a high rate of mutation in somatic and germinal tissues (such as P variegated pericarp in maize.)

In this preliminary study the varjegated pericarp phenotype in sorghum is shown to depend on somatic and germinal mutation of an allele Y^{V} (variegated pericarp) to the dominant Y (sele red pericarp), occurring at high frequency. Somatic mutation, producing conspicuously sectored red/variegated inflorescences, occurred frequently but/ in none of the instances was there evidence of twin somatic sectors. Somatic mutation of Y^{v} to Y occurred more frequently in homozygous ($\bar{Y} Y^{V}$) than in heterozygous ($Y^{V} \bar{Y}$) genotypes.

The genetic system producing variegated pericarp in sorghum bears many similarities to the variegated pericarp system in maize. A common crigin of the genetic elements involved in the two mutable gene systems might be inferred from the homology of phenotypes and similar modes of operation of the mutable gene systems.

GENETIC CONTROL OF ENDOSPERM PROTEINS IT
WHEAT AND RYE
By K.W. Shepherd
Department of Agronomy

Waite Agricultural Research Institute
Hexaploid wheats possess a complex mixture of electrophoretically different gliadin (storage) proteins in the grain, whereas diploid rye, a relative of wheat, possesses row of these proteins. In an analysis of chromosome deficient stocks of hexaploid wheat it was shown that most, if not all, of its gliadin proteins are controlled by genes on chromosomes 1 and 6 of each of the A, B, and.D genomes. Thus at least two chromosomes (land. 6) must have been associated with the equivalent proteins of the ancestral diploid from which the three wheat genomes are believed to be derived. However, although diploid rye is thought to have come from this same diploid progenitor, in an analysis of lines having single pairs of rye chromosomes added to the wheat genome it was found that the gliadin proteins of rye are controlled by gene (s) on just one rye chromosome(V).

It was shown that the reduced vegetative vigour and fertility of wheat nullisomics deficient in tum for each pair of group 1 chromosomes, could be largely overcome by substituting wye chromosome V for the deleted wheat chromosomes. Thus rye V is genetically related to the three group 1 wheat chromosomes.

To account for these results it is necessary to modify the commonly accepted pathway for the evolution of wheat and rye genomes.

SOME RESUITS OF SCUTEITAR BQISTTE SETECTION BEAPTWG ON CANAIISATION, DOMINANCR AND GBEETIC CORRTIATION.
 By B.I. Sheldon and M.K. Milton
 CSIRO Epping, $\mathbb{N} . S . W$.

Five high and five low scutellar brintlo lines were denived from Oregon RC and selected for periods up to 150 generations. The sc' allele was introduced into subsamples of these Iines at about generation 40, an extra dose of sc+ was introduced into otrer subsamples at generation 134 and the correlated responses in abdominal chattae were followed for most of the aeriod. Correlated zesponses in bristle number at other positions on the head and thorax were scored occasionally. Crosses between the low and high linos are being studied at present. Most of the rosults are consistent with the model that canalisation at 4 soutellar bristles in will type flies is brought about by a control genotype, regulating the activity of the scute locus. This genotype has apparently not been affected by selection in these lines, the responses, in one line ur to a mean of about 14 bristles, being due to seloction of other modifier genes. Dominance of + to schas been altered to some extent, but not disrupted, by selection, at least to generation 40. A positive correleted response in abdominals ocours in all lines but sone lines show a decrease in the proportion of total bristle resources betig used for abdominal.s.

TESTS FOR HETEROSIS IN DROSOPHITA MEIANOGASTER

By J. Sved
School of Biological Sciences,
University of Sydney.

A population cage test for heterosis has been carried out in D. melanogaster which is similar in design to the experiment of sved and Ayala (Genetics 66: 97) on D. psevaoobscura. The rosults indicate that homory osity of the entire second chromosome causes a depression in fithess of the order of 85%. A preliminary experimont on the effect of crowding carried out using larval samples from the cages has given a significant reduction in homozygote viability, unlike previous experiments which failed to demonstrate ony effect of crowding. The results are discussed Crom the point of view of Wallece's "hard" and "soft" selection.
A SIMUITANEOUS INVESTIGATION OF SEVERAI SGIEORION COMPONENTS IN DROSO MITA MFLAMOGASEEP.
By J. Bundgaard.
Department of Genetics and Iuman Variation
Ia Trobe University.

The total dynamics of a 4, chromosone polymorphism in Drosophila melanogester has been studied in varions genetic situations using an exnemmental systen by which it wes possible to get ovtimal information about the sexual, fecundity and zygotic seleotion patterns simultancously in each generation. Deta revealed that the selection component of major importance for the dynamics of this genetic system was sexuel selection. Both the zygotic and sexual selection component behaved in a frequency dependent way but the latter was the component respohsible for the stability of the polymorphism. Fecundity selection wes of very minor importance for the total dynamies of this system.

The results are discussed in relation to the study of selective forces in natural populations.

THE EFEECTIVE NUMBER OF IOCI IT SITECTION RESPONST

By W.R. Scowcroit
CSIRO Canberra

The quantitative identification and location of chromosomal regions contributing to the response to selection for both increased and decreased scutellar microchaetae in Drosophila melanogaster has been carried out by a recombinational subdivision of the X , IInd and IIIrd chromosomes. The correlated genetic effects on scutellar bristles, which shows a cormelated response to selection for microchaetae, were also studied.

The genetic changes following selection for increascd chaetae involved two regions on each of the IInd and IIIrd chromosomes, while selection for reduced microchaetae caused genetic changes at three sites on the IInd and two on the IIIrd chromosome. There were no significant genetic changes involving the X chromosome. Interaction did occur between the located "genes" which in one case suggested duplicate gene action and in on other complementary gene action.

There was some direct correlation between the changes affecting microchaetee and those affecting scutellar bristles. Other genetic changes that affected scutellar bristlos were manifested as interactions unfavourable to the direction of selection but which had no effect per se. These results will be interpreted along with other similar analyses in relation to the number, locction, and size of gene effects and the nature of gene interaction involved in quantitative genetio theory.

EFEPCTS OF POPULAMION SIZE AND SETBCTION

IITENSITY ON RTSPOTSES TO

DISRUPTIVE SETEOTTON
By I.J. Karlsson and J.S. Darker
Department of Animoz IIusbandry
University of Sydney

With the exception of the work of thoday and his collaborators, experimental disruptive selection has not been found to Iead to sexual isolation between the rwo parts of the the population. In the experiment to be reported, the effects ofpopulation size and intensity of selection (for sternopleural bristle number in D.melanogaster) on responses to disruptive selection, on degree of sexual isolation, and on mating behaviour have been investieated, Four treatments were used:
High number, high selection - 40 pairs selected from 1600 pairs
(1.replicate).

High number, low selection - 40 pairs selected from 80 pairs (two replicates).
Low number, high selection - 8 pairs selected from 320 pains (two replicates.)
Iow number, low selection - 8 pairs selected from 16 pairs (four replicates).
Selected high and low parents in each line in each generation were put in a mating chamber and matings recorded, so that mating behaviour parameters (mating speed and copulation duration) and isolation indices were calculated for every generation.

In the high number, high selection treatment, the two parts of the line were distinct subpopulations (no migration between them) by generation 3. Significant sexual isolation was found in four of the 17 generations of selection, but the regression of isolation index on generations was not significant. Results for the other treatments were more variable, but with no tendency to the development of sexual isolation.

THE RELATION BETWEEN THE HAGMOIYMPH PROTEINS

OF LARVA AND ADULT IN CAIIIPHORA
By J.F. Kinnear and M.D. Martin.
Department of Genetics
University of IIelboume

The striking contrast at both cell and tissue levels between erbryogenesis and larval development on the one hand, and imaginal differentiation and morphogenesis during metamorphosis on the other, led historically to the idea that two relatively distinct sets of genes must be involved in these processes (1) Recent evidence of limited protein synthesis during imaginal development in the pupa (2) has suggested the importance of reutilisation of larval protein at this stage. This implies (a) a major difference in the kind of gone activity in the pupa compared with the larva and (b) that adult proteins should be largely derived from the polypeptides of larval tissues.

The haemolymph serves as a link between the storage proteins of the fat body and the developing imaginal tissues. Changes from the larval to the adult spectrum of plasma proteins occur stepwise, but are quantitative rather than qualitative. The relation between the major protein species involved has been investigated immunologically, and at the polypeptide level, electrophoreticalzy.
(1) Wigglesworth, V.B. 1961. Roy. Int. Soc.Iond. SJmp.No.1, 103
(2) Dinamarca, M.I. and Levenbook,L. 1966. Arch. Biochem. Biophys. 117:110

IARVAI AND ADULT HAEMOLYMPH US GERASES IN CAIJIPHORA
 By J.A.Thomson and B.D. Voitl

Department of Genetics
University of melbourne.
Extensive polymorphisms for plasma esterases occurs in natural populations of C. stygis, at least 3 genetics systems being involved. The most complex of these controls a variable series of isozymes, function of at least one of which appears obligatory for normal development beyond hatching. The variant encymes of inbred strains and their crosses have been used in a systematic study of the relation between larval and adult esterases. The work confirms the evidence of Pantelouris and Downer (1) that quantitative rather than qualitative changes occur at metamorphosis, but thein implication that such data can provide critical evicience that no new genetic activity is involved in the transition is questioned.
(1) Pantelouris, E.M. and Dovmer, R.G.H. 1969. J. Insect Physiol. 15: 2357

```
PARTERNS OR NUCLPAR RNA AND PROTEIN IN
IARVAI TISSTIES OP OATITPHOPA
By Y.T.Sin.
Department of Gonetics,
University of Nelboume.
```

Pattems of nuclear PNA and protein in lamval tiasmes of Calliphora. Previous work from this Iaboratory (1) has provided evidonce of major changes in the amount and nature of nuelear inclusion RTP in the larval fat body and salivary glond. Changes in this nateriel, and in chromosome uispersion, can be correlated with activity of these cells in protein synthesis.

At the light mictoscope level, the nuclear RNP of each tissue has a characteristic form and distribution. The mejor RNA and protein species of these inclusion bodies has been exmined electrophoretically (2) in conjunction with studies on the acidic proteins and histones of the chromatin at the same stages. The data provide a basis for a preliminany analysis of the genetic significance of the developmental sequence shown by the nuclear RNP.
(1) Thomson,J.A. and Gunson, N.M. 1970. Chromosoma 30: 193
(2) Collaboration in some of these experiments with E. Paula Imray is gratefully acknowledged.

BIOCHEMICAL BASIS OF DIFFERENTIATION IN CHICKEN BMBRYOS

By H. Daday.
CSIRO Canberra

This paper will concern the mechanisms of C\&ll aggregation and involvement of protein during embryo development.

PHOSPHCGIYCERATE KINASE AND TETRAZOIIUH OXIDASE POIYMORPHISMS IN DROGOPHTIA

By G.K. Chew
Department of Genetics
La Trobe University, Melbourne.

Two enzyme systems have been studied in Drosophila (1) phosphoglycerate kinase, using starch gel electromoresis, and (2) tetrazolium oxidase using polyacrylamide gradient gel electrophoresis. Phosphoglycerate kinase (PGK) polymorphism has not been previously reported in Drosophila. It was found to be polymorphic in D. melanosester in this study. It appears to be a two allele autosomal systrin, the faster migrating lom being the more comon. Heterozygotes show both bands but no hybrid band is observed, so that the onzyme may be a monomer. Wild populations of D. melanogaster, D. simulans and D. immicrens were examined. A male-specific fuorescent gubstance was observed when PGK was being studied. Some observations on it will be reported. Two forms of Tetrazolium oxidase were observed in D. melanogaster. Hetrazygotes for this enzyme possess an intermediate bond wich sugsests a dimeric structure for this enzyme. A comparison between D. melanogaster and D. simulans populations is being carried out.

INHERITED VARIATION IN MARSUPTAT PHOSPHOGIYOREATE
KINASE AND ITS BEARING ON X-TNACTIVATION.
By J.I. VandeBere, D.W. Cooper G.B. Shaman and W. H. Poole.

Department of Genetics
La Trobe University, Melbourne.

An electrophoretic survey of red cell phosphoglycerate kinase in marsupials has been initiated. All species examined so far have a major form of tho enzyme which appears as an intense band after staining. sone species possess a slower moving minot band as well. Family data, along with population data, indicate that in those species where polymorphisms exist, the major band is inherited in a sex-linked manner, with the patemally derived Xchromosome being inactive in somatic cells of females. mine minor band appears to be inherited in a codominant autosomal fashion. Evolutionary implications will be discussed.
major
component:

$V E$ i faster than N
borer x paternal X
inactive
minor compmati: ('slow) antosomal.

$$
S F \times S \rightarrow S=S F
$$

X-TNACTIUATON IN EUTHERIAN AID MARSUPIAL MAMMALS
By D.W. Cooper and G.B. Sherman
Department of Genetics
La Probe University, Melbourne

Dosage compensation in eutherian mammals is achieved by inactivation of either the maternally derived or the patemally derived X chromosome (random X-inactivation or "Iyonization"). Studies on the X chromosmes of hybrid loagaroos show that the paternally derived X is always late labelling, which suggests that dosage compensation in marsupials is achieved by inactivation of the patemal X. This conclusion is supported by studies on sex linked enzyme differences, which also suggest that marsupials and eutherians have sex linked genes in common. A model for the evolution of random X-inactivation in eutherians will be presented,
used:

Searle'stranslocation in mouse example of paternal X mactivition
Abut XO mice, wh: have X from faller, are nt inactivated.

PARTTAIIY DEPECTIVE IAC OST REPRESSOR
 MUTANTS OF ESCHERICHIA COII

By B. Shineberg
Division of Plant Industry
CSIRO Canberca

The lactose repressor protein has two functions: to bind to the DNA of the lac operator and to mediate the effect or inducer in de-repressing the repcession of the Jac genes. While considerable genetic variability has been obtained in the repressor with respect to its affinity for inducews, variability with respect to its DNA binding function has tended to be limited to mutants whose function is completely impaired. The examination of a sample of mutants, capable of growth on phenyl-g-galactoside, revealed considerable variability in this basic function. Its natume and significance is discussed.

SEX FACTOR MUTANTS OF PSEUDOLCNHAS AERUGINOSA

By V.A. Stanisich
Department of Genetics

Monash University, Vic.

Males of P. aeruginosa strain PAT have been isolated which harbour mutants of the H ? Sex factor and are defective in both sex factor and host chromosome transfer to recipient bacteria. Another mutant of $\operatorname{FP} 2$ designated $\mathbb{F P}^{\otimes}$ is known to mediate ohromgsome transfer between finale bacteria such that mating of the type FPO x HP show at least a thousand fold increase in recombinant formation over that observed in $\mathrm{EP}^{+} x \mathrm{FP}^{+}$matings. These defective PP 2 factors can be transferred to recipient \oplus strains when males heterozygous for the two mutant sex factors FP FP ${ }^{(}$are constructed, suggesting that HP^{4} can provide the function (s) defective in $\mathcal{B P}$ male strains.

Wild type (EP^{+}) or mutant males (FP^{\oplus} or IP) are distinguishable from recipient bacteria (FP^{-}) by the io greater precipitability at PH5 This characteristic of male strains is a sex factor coded function. The properties of a male strain not showing this precipitation responses will be discussed.ininl $\mathrm{FP}^{+} \times \mathrm{FP}+10^{-7}-10^{-8}$
$\mathrm{FP}^{-} \mathrm{FP}^{+} \mathrm{q}_{0} \mathrm{FP}$

R F'AOTORS, PHAGES AND BOSD-CONDROIIED
 MODIBIOATION (HOM) IN P. AHUQTNOSA
 By V. Krishnopillai
 Department of Gonotios
 Monash Unjverrity, Vic.

Mnsee R factors R91, R18, and R68 arising Prom \mathcal{P}. asmainosa strains isolated in a Burns Unit were tronsferred to F. Ce . strain PAO and tested for their ability to restrict the rantication of 50 temperate phages. R91 had no eftroct on any of those phages - 5 while, R18 restricted phases 39, 227, and 228 (EOP reductions of 10-5 -10^{-9}) and R68 restricted phage G101 (TOP reduction of 10-1), R18 was unable to modify phages 39 and 223, while it was able to partially modify phage 227. These two R factors had no effect on the replication of the Salnonella phage P22 in S. tythimarium.

Complenentation tests for restoration of restriction frunction, made by transferring R18 or R68 into restriction-deficient bacterial mutants, indicated that the HCM systens controlled by the host and \mathbb{R} factor genomes were unrelated.

The R18 R facton protects against induction of the UV-inducible phages 39,228 or the UV-inducible aeruginocins produced sponteneously or following UV-irradiation by bactoria Iysogenic for phage 39 or 228. Such effects were not observed on the UV non-induciblo phage 227 and the same aeruginocins in 227- Iysogens.
those results demonstrate the extont of genes coded for by \mathbb{R} factors in adition to the traditionally encountered drue resistance genes.

SUPPRESSOR SYSTEM IN STAPHYLOCOCCUS AUROUS

By P. Kxetschmer and J.B. Egan
Department of Biochemistry
University of Adelaide, S.A.
A suppressor host mutant in Staphylococcus aurous strain NOTC 8325 has been isolated. Bacteria contemning two independently isolated mutations in the unlinked \underline{Z} and oar genes affecting lactose fermentation were tested for spontaneous single-step reversion to Z^{+}car phenotype. Two such Z^{-}car mutants reverted at a frequency of 10^{-3}, suggesting a single mutation (suppressor) had resulted in the phenotypic reversion.

One of these mutants was used to isolate suppressor sensitive (sus) mutants of the temperate staphylococcal phage P11; that is, phage which could grow on the revertant but not on the original bacterial strain. The mutants so far obtained (after UV, hydroxyamine or mitrosoguanidine mutagenesis) fall into 8 complementation groups, a fact which strongly indicates that the suppression is of the classical nonsense translation type.

Further sus mutants of P11 are being isolated with the aim of studying the biochemical genetics of phage infection in Stahylococcus aureus. Isolative ϕ mutants au t
aus mutant
mus mutants of coos streak (1) $\frac{1}{a}$
9 couple goons:
$\begin{array}{llllll}17 & 8 & 6 & 12 & 1 & 2121\end{array}$

MAPPING THE INTEGRATION SITE OF COITPTAGE 186
 By W.H.Woods and J.Barey Began
 Department of Biochemistry
 University of Adelaide.

We have found that coliphage 186 is inducible by ulta--violet irradiation but does not undergo zygotic induction in contrast with phage a which is subject to both these forms of induction. To further investigate the non-zygotic induction of phage 136 it was necessary to establish precisely the integration site of this phage into the E. coli genome.

The integration site has been mapped using fr $0-13$ and Hex KL16 conjugation systems, interrupted mating experiments and finally P1 transductions. It is located adjacent to the pheA locus which is at 50 minutes on the E. coli map. We axe presently attempting to demonstrate integration of the 186 genome by P1 transductions involving markers spanning the 186 attachment site and ultimately through specialised transductions by phage 186.

$\phi 186$ does not cause zygotic niduction as $\phi \lambda$ does whether for of dysgenic.
noeffect on $\frac{D}{2}$ aral marker

$$
\begin{array}{cc}
\text { dower } & \text { recipient } \\
x^{+}(186)^{-} & x^{-}(186)^{+}
\end{array}
$$

\downarrow
X^{+}hew many sillysgenaus?
186 nite maps between PleA and NalB. (50 min) (51 miss.)

A COMPOUND HYBRID ZONE IN DIDYMURIA

By E. Craddock

School of Biological Sciences
University of Sydney

Several chromosome races of the stick insect Didymuria violescens come into contact and hybridize within a limitod area on the northern edge of the Barrington Tops plateau. The consequences of the meiotic behaviour of hybrids from this zone will be discussed and an interpretation of the situation prosented.

CAUSAL SEQUENGE OF DIFFERTMTTATION INT MHE

EPACRIDACEAT
By Judith Fowd
School of Biological Sciences
FIinders University, S.A.

Bollowing telophase II in anthers of the Styphelioae (Ipacridaceae) three of the four microspore nuclei migrate to one end of the cell and degenerate: only one nucleus completes development. In a triploid species Leucopogon juniperinus, this ronctional nucleus always has a haploid chromosone number of (4) four: univalent chromosomes are excluded from the pollen.

Selection and degeneration of the three nuclei is the result of a causal sequence of events initiated at premeiotic mitosis:
$\rightarrow\left(\begin{array}{l}1) \text { Suppression of elongation of the mitotio anaphase spindle. }\end{array}\right.$ cells.
\rightarrow (3) Initiation of a tripolar spindie at metaphase I of meiosis. \rightarrow (4) Temporal difference between the two second division spindles. (In the special case of I. junsperinus and unequal distribution of chromosomes also results).
(A) (5)(5) Differentiation of 3 of the 4 telophase II nuclei. (fonsion of the "functional" oftoplasm pushes 3 nuclei (found in low-organellar cytoplasm) to one en
and a cell plate is laid down asymetrically.

In some species specialized chromosome behaviour hes anplified the temporal difference between second division spindles leading to a greater stability of the systern. Species lacking amplication often exhibit varied degrees of developnent within each pollen tetrad.
THE FPFECT OF X-IRRADTATION ON OHIASMA FRTQUENCY
IN CHORTHIPPUS BRUNNEUS (Tmunberg)
By Dr. M. Westemman
Department of Genetics end Euman Variation,
La Trobe University.
Low doses of X-irrodiation can alter chiasma frequency asscored at diplotene-diakinesis if given during discrete periods ofprophase I of meiosis. Thus irradiation given during promeioticDNA syntaesis leads to a reduction in mean cell chiasma frequency,while irradiations given in leptotene of gygotenemearly pachytene bothlead to an increase. The findings of a dose-response experinentwill be discussed in relation to a recent scheme (IAWRDION, C.W.and HOLT, P.D., 1970) which attempts to interpret the action ofionizing imradiations on meiosis.

EFFECT OF DENSITY ON GHIASMA FREQUENCY IN
 THE IOCUST, CHORTICELS TERMINIRERA
 By O.R. Byme and A. Hawle
 Department of Botany
 A.N.U. Canberra

Studies on variation in density of the plague looust, Chorticetes terminifera indicate a positive association with chiasma mequency. The effects of temperature and some biochemical metabolibes on chiasma number will also be reported.

EFPECT OF DENSITY ON RECOIITTNATION IN
 DROSOPHILA MELANOGASTER
 By A. Hawke and W. Scowcroft
 Department of Botany
 Plant Industry, CSIRO Canberra.

The effect of density on recombination between two linked maxkers
has been investigated and will be reported. Females from crowded cultures have shown a significantly lower recombination petcentage compared with females reared solitarily.

EFFECTS OF PLASMIDS ON RADIATION SENSTITVITY
OF SATMONEIIA TYPHIMURTUM
By D.G. NacPhee
Department of Genetics and Haman Variation
La Probe University.

Salmonella
E.cdi

Certain extrachromosomal genetic elements or plasmids have been found to protect strains of S. typhimurium against the lethal effect oi ultraviolet irradiation the same plasmids manlredly increase the UV mutability of bacteria carrying them. One possible explanation for these findings is that the plasmids carry a gene (or genes) concemed with repair of radiation damage. Results supporting this hypothesis have been obtained using the drugresistance transfer factor R-Utrecht. Interactions between
R_{1}-Utrecht and Cole (a colicin - determining plasmid which does not protect cells against UV) will be discussed.

Rureche froteds against all mutagen' ie agents.

> I Damages DNA need, excision UV 4 itherinoline oxide (NQO) Mitomyan C (MC)

II Dumaferent
re ing erasion
Lonisif radiation (x, γ)
methyl methane sulphate (HMS)
Nivirorguanidine (NTG)
Thymine starvation in thy mutant.
lexc $\underline{u r}^{s}$ mas $^{2} \operatorname{hat}(\mathrm{wv}) \operatorname{har}^{+}(\gamma) \operatorname{rec}^{+}$
$2 \mathrm{res} \quad \mathrm{uv}^{\mathrm{s}} \mathrm{mms}^{\mathrm{s}}$ her (ω) her (γ) rect
$3 \mathrm{rec} \quad \mathrm{ur}^{\mathrm{s}} \mathrm{mms}^{\mathrm{s}} \mathrm{her}^{+}(\mathrm{w})$ her${ }^{+}(\gamma)$ rec
me ri $26 \rightarrow$ revertants

umbinter Supporsor
RIOTS MUTANT
STRAINS OF NTUROSPORA CRASSA
By N.G. Brink
School of Biological Sciences
Flinders University s S.A.
Mutants which are resistant to the amino avoid analogues, 4-methyl-tryptophane and para-fluorophenylalanine have been isolated. These strains are defective in tryptophane transport.

Genetic revertants of allele mtr-26 have been isolated, and these are found to be of several types. Firstly, there are the site revextonts in which tryptophan uptake is similar to who type strains. Secondly, some second site (intragenie suppressor) reverta. ts have been found in which the rate of uptake is at a reduced level. The third type of revertant is due to forward mutation at an unlinked suppressor locus and uptake again appears to be at a reduced rate compared with wild type. This supptossor mutation does not appear to be a nonsense suppressor, but is probably due to an alteration in a second uptake system.

In the case of those revertants resulting from intragonic suppression, the second site has been isolated in some cases and is found to be defective in tryptophan transport similar to other moor alleles.

Bonk Suggests
whin not misters??
min 26? frame shift.
transfer RNA
spec. App. heads 4 instead of 3 bases.
me, $26 \times$ OTher mite mitames recomb $\sim 10^{-4}$

Solicini acton 1 Riboromes E3
2 DNA E 20
3 Energy $A, E, C, K, 1 a, 1 b$.
Surfocereaftor on E.oli

SENSITIVITY OR BACTERIOPHAGE λ TO COLICIN CAA 2-T2

By R.R. Hull andP.R. Reeves
Department of Microbiology
University of Adelaide

Treatment of $\mathrm{F} . \operatorname{coli} \mathrm{K} 12$ infected by C1857 with colicin CA42-E2 resulted in partial inhibition of the infectious rices. Uninfected bacteria were killed by colicin with a probability of about five times that of similamy treated λ infected bacteria (loss of plaque forming ability). The λ-DNA, when present in a bacterial cell either as the replicating DNA of infectious phage or as the nonreplicating DIMA of superinfecting phage was degraded to acid-soluble material following colicin treatment. An analysis of the intermediates of DNA breakdown has revealed that degradation of the DNA to acidsoluble material was preceded by endonucleolytic fragmentation of the chromosome at a limited number of sites. This is the same mechanism of degradation that has previously been observed for E.coli DivA.

GENTMIC IVPIICAIIONS OF THE ETNE STRUCTURE OF

NUCLEAR DIVISION TIN PARARICOIUM

By I. Stevenson
Department of Developmental Biology
Australian National University

The division process of the ciliate macronucleus is vsually described as amitotic; as there are generally no chances in chromatin condensation; or the appearance of chromosomes or comparable spindle elements to those found in the mitotic spindle. Macromolear amitosis has been studied in Paramecium arrelia with the electron microscope, and the involvement of microturular elements in each of the three stages of macronuclear amitosis, condensations elongation: and kayokinesis, has been demonstrated. In the light of ultra structural observations on amitosis, some concepts of structure and function in the ciliate macronucleus will be discussed.THE GENETIC MAP OF THE HUHAN X CHROMOSONE,WITH A REPORT OF A STUDY OF THE IINKAGERELATIONSHIPS OF THE LESCI-MYHAN LOCUS.By D. Wallace.
Queensland Institute of Iredical ResearchA large family with a partial deficiency of the enayne responsiblefor the Lesch-Nyhan syndrome, Hypoxanthine-guanine phosphoribosyltransferase has been found to be segregating for deuteranopic colourblindness and Xg. This has afforded an opportunity to study thelinkage relationships of these 3 X-linled Ioci. The results of thisstudy will be presented.

CHROMOSOMAL POLYMORPHISY OI THE Y CHROMOSOME

IN AUSTRALIAN ABORIGINAL AND WHITE ROPUIATIONS.
By Dr. R. Angell.
Prince Henry Hospital
Randwick IT.S.W.

The relative length of the Y chromosome in a group of Aboriginies from Central Australia and a group of Caucastans from Melboume has been cornpared. Anelysis of the data has demonstrated that the mean length of the Aboriginal Y is significantly shorter than that of the Caucasian Y. Examination of the fluorescence pattern of the Y chromosome using quinacrine mustard has shown a correlation between the extent of the fluorescent segment and the total length of the \mathbb{X} chromosome.

VARIATIONS IN MATING PROPENSITTIS IN SETECTED STRATNS

OF DROSOPHILA MET M OGASTER

By J.A McKenzie and P.A. Parsons
Department of Genetics and Human Variation, La Trobe University, Melbourne.

Mating experiments were carried out by means of multiple choice and male and female choice experiments between 3 lines of D. melanogaster, previously subjected to directional selection For scutellar chaeta number for 73 gonerations. Mean chacta numbers of these lines designated A, B and C, were 4,6 and 16 respectively. Line C was homozygous scabrous, sca, and hence sca sca flies were substituted for line C in analogous experiments to determine the importance of the sce locus in the behavioural patterms observed.

Iines A and B mated essentially at random with each other but line C showed extremely high female receptivity and Iow male mating propensity compared with A and B. Mating propensities within the lines are much nore equivalent indicating an adaptation of the thresholds of the sexes of the 3 lines.

The matin behaviour of the homozygous sea sca stock paralleled that of line C in all respects, but was not as extreme as ine C. It would thus appear that the difference in the mating behaviour of line C, and A and B may be partially involved with the region of the sca locus.

MORPHOLOGY AND BEHAVIOUR IN MICE AND MEN

By P.A. Parsons
Department of Genetics and Human Variation
La Trobe University

Three inbred strains of mice and their hybrids were assayed for open field activity, open field emoticnality, explonatory ability, initial reaction to shock, and learning in a conditioned avoidance apparatus. In general, strains Balb/c and C57BI were extreme for all traits and C3H intermediade. The same was found for weight in that $B a l b / c>C 3 H>C 57 B l$. Skeletal variability was assayed by scoring the presence or absence of 25 minor slocletal. variants. Computing measures of divergence between strains gave the same order. Hybrids mostly fell between the inbred strains, with the exception of traits associated with leaming which showed heterosis often associated with homeostasis.

Admitting that the number of strains is limited, the data allow one naively to argue for a correlation between skeletal norphology, weight and behavioural traits, which may not be unreasonable since skeletal variants are presumably associated with variants of the musculaz, nervous and vascular systems, and hence with behaviour. This rerult, if substantiated, would support theories of rolationships between lorphology (somatotypes) and behaviour in man, and agrees with th: associations found between morphological and behavioural diverge e e in the genus Drosophila.
(This wols was done in collaboration with Wendy Kellock and Astrid Rose.)

